Aim: To assess the renal effects of chronic exposure to advanced glycation end-products (AGEs) in the absence of diabetes and the potential impact of concomitant treatment with the antioxidant N-acetyl cysteine (NAC). Methods: Wistar rats received intraperitoneally 20 mg/kg/day of albumin modified (AlbAGE) or not (AlbC) by advanced glycation for 12 weeks and oral NAC (600mg/L; AlbAGE+NAC and AlbC+NAC, respectively). Biochemical, urinary and renal morphological analyses; carboxymethyl-lysine (CML, an AGE), CD68 (macrophage infiltration), and 4-hydroxynonenal (4-HNE, marker of oxidative stress) immunostaining; intrarenal mRNA expression of genes belonging to pathways related to AGEs (Ager, Ddost, Nfkb1), renin-angiotensin system (Agt, Ren, Ace), fibrosis (Tgfb1, Col4a1), oxidative stress (Nox4, Txnip), and apoptosis (Bax, Bcl2); and reactive oxidative species (ROS) content were performed. Results: AlbAGE significantly increased urine protein-to-creatinine ratio; glomerular area; renal CML content and macrophage infiltration; expression of Ager, Nfkb1, Agt, Ren, Tgfb1, Col4a1, Txnip, Bax/Bcl2 ratio; and 4-HNE and ROS contents. Some of these effects were attenuated by NAC concomitant treatment. Conclusion: Because AGEs are highly consumed in modern diets and implicated in the progression of different kidney diseases, NAC could be a therapeutic intervention to decrease renal damage, considering that long-term restriction of dietary AGEs is difficult to achieve in practice.