Abstract. The implication of advanced glycation end products (AGE) in the pathogenesis of atherosclerosis and of diabetic and uremic complications has stimulated a search for AGE inhibitors. This study evaluates the AGE inhibitory potential of several well-tolerated hypotensive drugs. Olmesartan, an angiotensin II type 1 receptor (AIIR) antagonist, as well as temocaprilat, an angiotensin-converting enzyme (ACE) inhibitor, unlike nifedipine, a calcium blocker, inhibit in vitro the formation of two AGE, pentosidine and N ⑀ -carboxymethyllysine (CML), during incubation of nonuremic diabetic, nondiabetic uremic, or diabetic uremic plasma or of BSA fortified with arabinose. This effect is shared by all tested AIIR antagonists and ACE inhibitors. On an equimolar basis, they are more efficient than aminoguanidine or pyridoxamine. Unlike the latter two compounds, they do not trap reactive carbonyl precursors for AGE, but impact on the production of reactive carbonyl precursors for AGE by chelating transition metals and inhibiting various oxidative steps, including carbon-centered and hydroxyl radicals, at both the pre-and post-Amadori steps. Their effect is paralleled by a lowered production of reactive carbonyl precursors. Finally, they do not bind pyridoxal, unlike aminoguanidine. Altogether, this study demonstrates for the first time that widely used hypotensive agents, AIIR antagonists and ACE inhibitors, significantly attenuate AGE production. This study provides a new framework for the assessment of families of AGE-lowering compounds according to their mechanisms of action.Advanced glycation and oxidation irreversibly modify proteins over the years and thus contribute to aging phenomena (1). Their local or generalized acceleration is associated with atherosclerosis (2-6) as well as with various diabetic (7-10) and uremic complications (11-13). Inhibition of advanced glycation end products (AGE) formation has thus become a therapeutic goal.Aminoguanidine, the first AGE inhibitor discovered in 1986 (14), and (Ϯ)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) (15) are both hydrazine-derivatives. They inhibit in vitro the formation of AGE, pentosidine (16), and N ⑀ -carboxymethyllysine (CML) (17) from a variety of individual precursors, such as ribose, glucose, and ascorbate, as well as that of advanced lipoxidation end products (ALE), malondialdehyde-lysine and 4-hydroxynonenal-protein adduct (18), from arachidonate (19). They also inhibit pentosidine generation in diabetic and uremic plasma incubated for 4 wk (20).As expected, both compounds correct several biologic effects that are associated with AGE formation. In murine thymocyte and fibroblasts, they inhibit the phosphorylation of tyrosine residues of a number of intracellular proteins induced by cell surface Schiff base formation (21). Given to diabetic animal models, such as Otsuka-Long-Evans-Tokushima-Fatty (OLETF) or streptozotocin-treated rats, they reduce urinary albumin excretion and improve glomerular morphology (15,22). Oral admi...