2021
DOI: 10.21203/rs.3.rs-912383/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Advanced Hybrid Machine Learning Algorithms for Multistep Lake Water Level Forecasting

Abstract: Random Tree (RT) and Iterative Classifier Optimizer (ICO) based on Alternating Model Tree (AMT) regressor machine learning (ML) algorithms coupled with Bagging (BA) or Additive Regression (AR) hybrid algorithms were applied to forecasting multistep ahead (up to three months) Lake Superior and Lake Michigan water level (WL). Partial autocorrelation (PACF) of each lake’s WL time series estimated the most important lag times — up to five months in both lakes — as potential inputs. The WL time series data was part… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 53 publications
0
0
0
Order By: Relevance