2024
DOI: 10.3390/s24134072
|View full text |Cite
|
Sign up to set email alerts
|

Advanced Hyperspectral Image Analysis: Superpixelwise Multiscale Adaptive T-HOSVD for 3D Feature Extraction

Qiansen Dai,
Chencong Ma,
Qizhong Zhang

Abstract: Hyperspectral images (HSIs) possess an inherent three-order structure, prompting increased interest in extracting 3D features. Tensor analysis and low-rank representations, notably truncated higher-order SVD (T-HOSVD), have gained prominence for this purpose. However, determining the optimal order and addressing sensitivity to changes in data distribution remain challenging. To tackle these issues, this paper introduces an unsupervised Superpixelwise Multiscale Adaptive T-HOSVD (SmaT-HOSVD) method. Leveraging … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 55 publications
0
0
0
Order By: Relevance