In the past few decades various particle image–based volumetric flow measurement techniques have been developed that have demonstrated their potential in accessing unsteady flow properties quantitatively in various experimental applications in fluid mechanics. In this review, we focus on physical properties and circumstances of 3D particle–based measurements and what knowledge can be used for advancing reconstruction accuracy and spatial and temporal resolution, as well as completeness. The natural candidate for our focus is 3D Lagrangian particle tracking (LPT), which allows for position, velocity, and acceleration to be determined alongside a large number of individual particle tracks in the investigated volume. The advent of the dense 3D LPT technique Shake-The-Box in the past decade has opened further possibilities for characterizing unsteady flows by delivering input data for powerful data assimilation techniques that use Navier–Stokes constraints. As a result, high-resolution Lagrangian and Eulerian data can be obtained, including long particle trajectories embedded in time-resolved 3D velocity and pressure fields. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.