InvestIgacIón
ResumenLa identificación de señales cerebrales provenientes de microelectrodos de registro (MER) es un procedimiento clave en la estimulación cerebral profunda (DBS en inglés) aplicada en pacientes con enfermedad de Parkinson (EP). El propósito de esta investigación es identificar con alta precisión una estructura cerebral llamada núcleo subtalámico (STN), ya que es la estructura objetivo donde se logran los mejores resultados terapéuticos de la DBS. Para ello, se presenta un enfoque de representación óptima de señales MER mediante el método de Frames (MOF por sus siglas en inglés), con el cual se obtienen coeficientes que minimizan la norma Euclidiana de orden 2. A partir de los coeficientes óptimos se realiza una extracción de características de las señales combinando diccionarios wavelet packet y coseno. Para tener un marco de comparación con el estado del arte, también se caracterizan las señales utilizando la transformada wavelet discreta (DWT) con diferentes funciones madre. La metodología propuesta se valida en una base de datos real, y se emplean máquinas de aprendizaje supervisadas simples, como el clasificador K-Nearest Neighbors (K-NN), el clasificador lineal bayesiano (LDC) y el cuadrático (QDC). Los resultados de clasificación que se obtienen con el método propuesto mejoran significativamente el rendimiento alcanzado con la DWT, de manera que se logra una identificación positiva del STN superior al 97,6%. Los índices de identificación logrados por el MOF son muy precisos, ya que potencialmente se puede obtener una tasa de falsos positivos menores al 2% durante la DBS. Palabras clave: aprendizaje de máquina, enfermedad de Parkinson, estimulación cerebral profunda, procesamiento digital de señales, señales MER.
AbstractIdentification of brain signals from microelectrode recordings (MER) is a key procedure during deep brain stimulation (DBS) applied in Parkinson's disease patients. The main purpose of this research work is to identify with high accuracy a brain structure called subthalamic nucleus (STN), since it is the target structure where the DBS achieves the best therapeutic results. To do this, we present an approach for optimal representation of MER signals Representación óptima de señales MER aplicada a la identificación de estructuras cerebrales durante la estimulación cerebral profunda