2008 21st IEEE International Symposium on Computer-Based Medical Systems 2008
DOI: 10.1109/cbms.2008.54
|View full text |Cite
|
Sign up to set email alerts
|

Advanced Methods for Target Navigation using Microelectrode Recordings in Stereotactic Neurosurgery for Deep Brain Stimulation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
6
0
1

Year Published

2010
2010
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(7 citation statements)
references
References 7 publications
0
6
0
1
Order By: Relevance
“…Another common approach is the time-frequency analysis, which consists in transforming the MER signals to different mathematical representation spaces. Examples include the Short-Time Fourier Transform space (STFT) for power spectrum analysis (Chuang et al 2012;Novak et al 2007), the Wavelet Transform space (WT) (Gemmar et al 2008), and the Hilbert-Huang Transform space (HHT) (Pinzon et al 2009). Within the wavelet space, analysis by adaptive filter banks or adaptive wavelets (AW) is one of the most powerful methods for feature extraction in MER signals (Giraldo et al 2008;Pinzon et al 2010).…”
Section: Introductionmentioning
confidence: 99%
“…Another common approach is the time-frequency analysis, which consists in transforming the MER signals to different mathematical representation spaces. Examples include the Short-Time Fourier Transform space (STFT) for power spectrum analysis (Chuang et al 2012;Novak et al 2007), the Wavelet Transform space (WT) (Gemmar et al 2008), and the Hilbert-Huang Transform space (HHT) (Pinzon et al 2009). Within the wavelet space, analysis by adaptive filter banks or adaptive wavelets (AW) is one of the most powerful methods for feature extraction in MER signals (Giraldo et al 2008;Pinzon et al 2010).…”
Section: Introductionmentioning
confidence: 99%
“…Otro enfoque muy común es el análisis tiempo-frecuencia, en el cual las señales MER se transforman a distintos espacios, por ejemplo, el espacio de la transformada corta de Fourier (STFT) (Novak, Daniluk, Elias, & Nazzaro, 2007), el espacio wavelet (WT) (Gemmar, Gronz, Henrichsand, & Hertel, 2008) y también con métodos empíri-cos como la transformada Hilbert-Huang (HHT) (Pinzon, Garcés, Orozco, & Nazzaro, 2009). Estas metodologías entregan resultados aceptables de clasificación, sin embargo no ofrecen buena generalización al momento de validar un sistema de identificación automática.…”
Section: Introductionunclassified
“…Finally, the last approach is a combination called time-frequency analysis. In these, MER signals are transformed into a different space, i.e, wavelet space [3], Short-time Fourier Transform (STFT) space [4], Gaussian mixture models (GMM) space, and others [5]- [7]. As result, hidden information can be revealed and used for nuclei discrimination.…”
Section: Introductionmentioning
confidence: 99%