INTEGRATED PROCESS PLANNING AND SCHEDULING USING GENETIC ALGORITHMS
Imran Ali Chaudhry, Muhammad UsmanOriginal scientific paper Process planning and scheduling are two of the most important functions in any manufacturing system. Traditionally process planning and scheduling are considered as two separate functions. In this paper a Genetic Algorithm (GA) for integrated process planning and scheduling is proposed where selection of the best process plan and scheduling of jobs in a job shop environment are done simultaneously. In the proposed approach a domain independent spreadsheet based approach is presented to solve this class of problems. The precedence relations among job operations are considered in the model, based on which implicit representation of a feasible process plans for each job can be done. To verify the performance and feasibility of the presented approach, the proposed algorithm has been evaluated against a number of benchmark problems that have been adapted from the previously published literature. The experimental results show that the proposed approach can efficiently achieve optimal or near-optimal solutions for the problems adopted from literature. It is also demonstrated that the proposed algorithm is of general purpose in application and could be used for the optimisation of any objective function without changing the model or the basic GA routine.
Keywords: integrated process planning and scheduling (IPPS); genetic algorithms; job shop
Integracija projektiranja tehnoloških procesa i planiranja primjenom genetičkih algoritamaIzvorni znanstveni članak Projektiranje tehnoloških procesa i planiranje predstavljaju dvije najvažnije funkcije svakog proizvodnog procesa. Tradicionalno se one smatraju dvjema odvojenim funkcijama. U ovom se radu predlaže Genetički Algoritam (GA) za integraciju ovih aktivnosti, gdje se simultano odvija izbor najboljeg tehnološkog procesa i vremenski plan poslova u pogonu. U radu se za rješavanje te vrste problema predstavlja pristup zasnovan na proračunskoj tablici neovisnog područja. U modelu se razmatraju odnosi prvenstva u izvođenju poslova na temelju kojih se donosi implicitno predstavljanje mogućih planova za izvršenje svakog posla. Zbog provjere izvršenja i ostvarivosti predstavljenog pristupa, predloženi se algoritam provjeravao na nizu referentnih problema prilagođenih iz ranije objavljene literature. Eksperimentalni rezultati pokazuju da se predloženim pristupom mogu učinkoviti postići optimalna ili njima blizu rješenja za probleme prilagođene iz literature. Također je pokazano da predloženi algoritam ima opću namjenu i može se primijeniti za optimizaciju bilo koje objektivne funkcije bez promjene modela ili osnovne GA rutine.
Ključne riječi: integracija projektiranja tehnoloških proces i planiranja (IPPS); genetički algoritami; radna mjesta