This article emphasizes the importance of prodrugs and their diverse spectrum of effects in the field of developing novel drugs for a variety of biological applications. Prodrugs are chemicals that are supplied inactively, but then go through enzymatic and chemical transformation in vivo to release the active parent medication that can have the desired pharmacological effect. By adding an inactive chemical moiety, prodrugs are improved in a number of ways that contribute to their potency and durability. For the purpose of illustrating the usefulness of the prodrug approach, this review covers examples of prodrugs that have been made available or are now undergoing human trials. Additionally, it included lists of the most common functional groups, carrier linkers, and reactive chemicals that can be used to create prodrugs. The current study also provides a brief introduction, several chemical methods and modifications for creating prodrugs and mutual prodrugs, as well as an explanation of recent advancements and difficulties in the field of prodrug design. The primary chemical carriers employed in the creation of prodrugs, such as esters, amides, imides, NH‐acidic carriers, amines, alcohols, carbonyl, carboxylic, and azo‐linkages, are also discussed. This review also discusses glycosidic and triglyceride mutually activated prodrugs, which aim to deliver the drugs after bioconversion at the intended site of action. The article also discusses the extensive chemistry and wide variety of applications of recently approved prodrugs, such as antibacterial, anti‐inflammatory, cardiovascular, antiplatelet, antihypertensive, atherosclerotic, antiviral, etc. In order to illustrate the prodrug and mutual drug concept's various applications and highlight its many triumphs in overcoming the formulation and delivery of problematic pharmaceuticals, this work represents a thorough guide that includes the synthetic moiety for the reader.