The objective of this work was to assess the potential of thorium based fuel to minimise Pu and MA production in Pressurised Water Reactors (PWRs). The assessment was carried out by examining destruction rates and residual amounts of Pu and MA in the fuel used for transmutation. In particular, sensitivity of these two parameters to the fuel lattice Hydrogen to Heavy Metal (H/HM) ratio and to the fuel composition was systematically investigated. All burn-up calculations were performed using CASMO4 -the fuel assembly burn-up code. The results indicate that up to 1 000 kg of reactor grade Pu can potentially be burned in thorium based fuel assemblies per GW e Year. Up to 75% of initial Pu can be destroyed per path. Addition of MA to the fuel mixture degrades the burning efficiency. The theoretically achievable limit for total TRU destruction per path is 50%. Efficient MA and Pu destruction in thorium based fuel generally requires a higher degree of neutron moderation and, therefore, higher fuel lattice H/HM ratio than typically used in the current generation of PWRs. Reactivity coefficients evaluation demonstrated the feasibility of designing a Th-Pu-MA fuel with negative Doppler and moderator temperature coefficients.
280