2021
DOI: 10.1016/j.jsames.2020.103115
|View full text |Cite
|
Sign up to set email alerts
|

Advanced signal recognition methods applied to seismo-volcanic events from Planchon Peteroa Volcanic Complex: Deep Neural Network classifier

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
3

Year Published

2021
2021
2025
2025

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 14 publications
(10 citation statements)
references
References 39 publications
0
6
0
3
Order By: Relevance
“…e extracted two data pieces are matched according to the above collected dance action and music beat characteristic data. Since there is a corresponding relationship between dance action and music beat before training [18], the corresponding relationship between them is regarded as a corresponding model before matching, which is set as…”
Section: Dance Action and Music Beat Data Matchmentioning
confidence: 99%
“…e extracted two data pieces are matched according to the above collected dance action and music beat characteristic data. Since there is a corresponding relationship between dance action and music beat before training [18], the corresponding relationship between them is regarded as a corresponding model before matching, which is set as…”
Section: Dance Action and Music Beat Data Matchmentioning
confidence: 99%
“…Las técnicas de reconocimiento y clasificación se tornan invaluables para el seguimiento de volcanes activos, además, la búsqueda de procesos que ilustren eficacia y eficiencia con el tratamiento de grandes conjuntos de información conlleva al uso de nuevas metodologías, dentro de las cuales, se encuentra la inteligencia artificial. Martinez y otros [26], ilustran en su investigación denominada "Advanced signal recognition methods applied to seismo-volcanic events from Planchon Peteroa Volcanic Complex: Deep Neural Network classifier", la capacidad de las redes neuronales profundas mediante el uso de parametrizaciones de eventos como una herramienta confiable, fuente de un catálogo sísmico, logrando de esta forma, caracterizar escenarios volcánicas aún no analizados. Lo anterior fue consecuente con el objetivo de esta investigación, puesto que, contempla flujos de trabajo parecidos, más no iguales, para el monitoreo de volcanes.…”
Section: Reconocimiento De Señales De Eventos Sismo-volcánicos Con Re...unclassified
“…Con base en el análisis de la información y las librerías ofrecidas por el Software R, se realizó una red neuronal cuya variable dependiente es el valor en radianes de la fase y las variables exploratorias se conforman de las veintiséis (26) ilustradas en la Tabla 9, se tomaron 2 redes ocultas, con cinco (5) y tres (3) neuronas correspondientemente.…”
Section: Creación De Las Redes Neuronales Y Predicciónunclassified
See 1 more Smart Citation
“…Various techniques have been proposed for modelling subsurface dynamics, including Deep Learning and Machine Learning (e.g., Titos et al, 2018;Bueno et al, 2019;Bueno et al, 2021;Martínez et al, 2021), satellite remote sensing (e.g., Ganci et al, 2020), among others (e.g., Saccorotti and Lokmer, 2021). However, tomographic analysis based on seismic velocity and attenuation remains one of the best tools because it can provide direct links between changes in wave-field properties and the physical conditions of the medium (Castro-Melgar et al, 2021).…”
Section: Introductionmentioning
confidence: 99%