In this paper, we seek to provide unmanned ground vehicles with positioning service using ultrawideband (UWB) technology, a high-accuracy positioning approach. UWB is chosen for two distinct reasons. First, it does not rely on global navigation satellite systems like GPS, making it able to be applied indoors or in an environment where GPS signal is unstable. Second, it is immune to interference from other signals and accurate enough to guide unmanned ground vehicles moving precisely in a complex environment within a narrow road. In this paper, three UWB base stations are aggregated as a group in a 2D space for localization. A large number of tests are performed with a UWB base station cluster in order to validate its positioning performance. Based on the experiment results, we further develop a dynamic particle swarm optimization-based algorithm and a genetic algorithm to deploy multiple clusters of UWB base stations to cover an area of interest. The performance of the proposed algorithms has been tested through a series of simulations. Finally, experiments using unmanned ground vehicles are carried out to validate the localization performance. The results confirm that the robots can follow complex paths accurately with the proposed UWB-based positioning system.