This paper presents a trajectory-tracking controller of an inverted pendulum system on a self-balancing differential drive platform. First, the system modeling is described by considering approximations of the swing angles. Subsequently, a discrete convex representation of the system via the nonlinear sector technique is obtained, which considers the nonlinearities associated with the nonholonomic constraint. The design of a discrete parallel distributed compensation controller is achieved through an alternative method due to the presence of uncontrollable points that avoid finding a solution for the entire polytope. Finally, simulations and experimental results using a prototype illustrate the effectiveness of the proposal.