High-efficiency air filtration is a basic requirement for the most cost-effective operation of high-efficiency gas turbines. The filtration system protects the gas turbine from damaging debris. In gas turbine/dust collector applications, higher efficiency filtration could be achieved with nanofibers, which provide higher equipment protection than traditional media. With a nanofiber performance filter layer, the dust accumulates on the surface of the filtration media rather than within the media and could be cleaned off easily with a back pulse resulting in long filter life and a low-operating pressure drop. In this study five type of gas tribune nanofiber coated corrugated cellulose/synthetic filter media were developed. Nanofiber coating was adjusted for five filtration efficiency level, 50 ≤ E < 60, 60 ≤ E < 70, 70 ≤ E < 85, 85 ≤ E < 95 and 95 ≤ E, pore size and filter-life of the developed media were evaluated. One of the developed nanofiber coated media was also compared with two other commercial nanofiber coated gas tribune filter media, a glass fiber type filter media and a commercial fine fiber gas tribune filter media. It was seen that, with decreasing penetration levels due to nanofiber coating level, initial 30 cycle durations of filter life evaluation could reach about 229.9 to 250.7 min. Highest final cycle duration of 188.7 min belonged to cellulose/synthetic blend corrugated filter media with penetration of 13.66%. Nanofiber based surface filter media was cleaned up better than fine fiber media and final 30 cycle sequences were significantly higher. Surface of the nanofiber coated media was smoother when compared to fine fiber media and during the initial and final cycle test dust could not penetrate inside and could not hang to this smooth surface. So, with back pulse cleaning cake releasing have performed easily. It was also seen that, for higher filter life nanofiber coating should be uniform and robust to back pulse cleaning.