Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Tumor‐on‐chip (ToC) is crucial to bridge the gap between traditional cell culture experiments and in vivo models, allowing to recreate an in vivo‐like microenvironment in cancer research. ToC use microfluidics to provide fine‐tune control over environmental factors, high‐throughput screening, and reduce requirements of samples and reagents. However, creating these microfluidic devices requires skilled researchers and dedicated manufacturing equipment, making widespread adoption cumbersome and difficult. To address some bottlenecks and improve accessibility to ToC technology, innovative materials and fabrication processes are required. Polystyrene (PS) is a promising material for microfluidics due to its biocompatibility, affordability, and optical transparency. Herein, a fabrication process based on direct laser writing on thermosensitive PS, allowing the swift and economical crafting of devices with easy pattern alterations, is presented. For the first time, a device for cell culture fabricated only by PS is presented, allowing customizing and optimization for efficient cell culture approaches. These biochips support 2D and 3D cultures with comparable viability and proliferation kinetics to traditional 96‐well plates. The data show that gene and protein silencing efficiencies remain consistent across both chip and plate‐based cultures, either 2D culture or 3D spheroid format. Although simple, this approach might facilitate the use of customized chip‐based cancer models.
Tumor‐on‐chip (ToC) is crucial to bridge the gap between traditional cell culture experiments and in vivo models, allowing to recreate an in vivo‐like microenvironment in cancer research. ToC use microfluidics to provide fine‐tune control over environmental factors, high‐throughput screening, and reduce requirements of samples and reagents. However, creating these microfluidic devices requires skilled researchers and dedicated manufacturing equipment, making widespread adoption cumbersome and difficult. To address some bottlenecks and improve accessibility to ToC technology, innovative materials and fabrication processes are required. Polystyrene (PS) is a promising material for microfluidics due to its biocompatibility, affordability, and optical transparency. Herein, a fabrication process based on direct laser writing on thermosensitive PS, allowing the swift and economical crafting of devices with easy pattern alterations, is presented. For the first time, a device for cell culture fabricated only by PS is presented, allowing customizing and optimization for efficient cell culture approaches. These biochips support 2D and 3D cultures with comparable viability and proliferation kinetics to traditional 96‐well plates. The data show that gene and protein silencing efficiencies remain consistent across both chip and plate‐based cultures, either 2D culture or 3D spheroid format. Although simple, this approach might facilitate the use of customized chip‐based cancer models.
Spheroids have become principal three-dimensional models to study cancer, developmental processes, and drug efficacy. Single-cell analysis techniques have emerged as ideal tools to gauge the complexity of cellular responses in these models. However, the single-cell quantitative assessment based on 3D-microscopic data of the subcellular distribution of fluorescence markers, such as the nuclear/cytoplasm ratio of transcription factors, has largely remained elusive. For spheroid generation, ultra-low attachment plates are noteworthy due to their simplicity, compatibility with automation, and experimental and commercial accessibility. However, it is unknown whether and to what degree the plate type impacts spheroid formation and biology. This study developed a novel AI-based pipeline for the analysis of 3D-confocal data of optically cleared large spheroids at the wholemount, single-cell, and sub-cellular levels. To identify relevant samples for the pipeline, automated brightfield microscopy was employed to systematically compare the size and eccentricity of spheroids formed in six different plate types using four distinct human cell lines. This showed that all plate types exhibited similar spheroid-forming capabilities and the gross patterns of growth or shrinkage during 4 days after seeding were comparable. Yet, size and eccentricity varied systematically among specific cell lines and plate types. Based on this prescreen, spheroids of HaCaT keratinocytes and HT-29 cancer cells were further assessed. In HaCaT spheroids, the in-depth analysis revealed a correlation between spheroid size, cell proliferation, and the nuclear/cytoplasm ratio of the transcriptional coactivator, YAP1, as well as an inverse correlation with respect to cell differentiation. These findings, yielded with a spheroid model and at a single-cell level, corroborate earlier concepts of the role of YAP1 in cell proliferation and differentiation of keratinocytes in human skin. Further, the results show that the plate type may influence the outcome of experimental campaigns and that it is advisable to scan different plate types for the optimal configuration during a specific investigation.
Background Gynecological cancers (GC) pose a severe threat to the health and safety of women’s lives, and organoids, as in-vitro research models, have demonstrated significant advantages in simulating tissue characteristics and drug screening. In recent years, there has been a rapid increase in research outcomes related to organoids in GC. However, there has been no bibliometric study concerning.Methods Publications related to GC and organoids from 2010-2023 were retrieved from the Web of Science Core Collection (WoSCC). We conducted a bibliometric analysis and visualization using CiteSpace, VOSviewer, and the Bibliometrix R Package. This analysis included the spatiotemporal distribution, author, sources, references, and keywords.Results A total of 333 publications were included. The number of annual publications indicated an explosive phase of development since 2019. The USA was the most important country in terms of cooperation, publication output, citation and centrality. University of California system ranked first in productivity among institutions, and HIPPO Y is the most relevant author in the research field. CANCERS published the most documents, and NATURE is the most cited sources. Analysis of Keywords and References, it is possible to establish the trend, and find the hotspots in the research field.Conclusion This bibliometric analysis delineated global landscapes and progress trends in GC organoids research. This study emphasized that organoids can effectively replicate the original tissue or tumors, providing a good in-vitro model for research on tumor-related mechanisms and showing significant advantages in drug screening and efficacy clinical prediction. Additionally, as preclinical models, they provide compelling evidence for personalized therapy and prediction of patient drug responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.