Phenylboronic acids are a class of compounds that bind glucose and other sugars. When polymerized into hydrogels, they provide a convenient nonenzymatic means for sensing glucose concentration, provided competing sugars are present at negligible concentrations. In this paper we provide a comprehensive study of swelling of hydrogels containing methacrylamidophenylboronic acid (MPBA), as a function of pH and concentration of either glucose or fructose. In one set of hydrogels, MPBA is substituted at 20 mol· % in a polyacrylamide hydrogel [p(MPBA-co-AAm)], while in a second set of hydrogels, 20 mol· % MPBA is supplemented with 20 mol· % of N-3-(dimethylaminopropyl methacrylamide) [p(MPBA-co-DMP-co-AAm)]. Swelling curves are markedly different for fructose and glucose, and for the two sets of hydrogels. While fructose alters swelling by binding and contributing to the ionization of MPBA, glucose does the same, but it also can form crosslinking bridges between separate chains, leading to hydrogel shrinkage. While the [p(MPBA-co-AAm)] hydrogels behaved as polyacids, swelling monotonically with increasing pH, the [p(MPBA-co-DMP-co-AAm)] hydrogels exhibited polyampholyte behavior, with swelling minima at intermediate pH values.