Objectives
The aim of this study was to explore post-MI myocardial inflammation.
Background
Innate immune cells are centrally involved in infarct healing and are emerging therapeutic targets in cardiovascular disease, however; clinical tools to assess their presence in tissue are scarce. Furthermore, it is currently not known if the non-ischemic remote zone recruits monocytes.
Methods
Acute inflammation was followed in mice with coronary ligation by 18FDG PET/MRI, FACS, PCR and histology.
Results
Gd-DTPA enhanced infarcts showed high 18FDG uptake on day 5 after MI. Cell depletion and isolation data confirmed that this largely reflected inflammation; CD11b+ cells had 4-fold higher 18FDG uptake than the infarct tissue from which they were isolated (P<0.01). Surprisingly, there was considerable monocyte recruitment in the remote myocardium (~104/mg myocardium, 5.6-fold increase, P<0.01), a finding mirrored by macrophage infiltration in remote myocardium of patients with acute MI. Temporal kinetics of cell recruitment were slower than in the infarct, with peak numbers on day 10 after ischemia. Quantitative PCR showed robust increase of recruiting adhesion molecules and chemokines in remote myocardium (e.g. 12-fold increase of MCP-1), although levels were always lower than in the infarct. Finally, matrix metalloproteinase activity was significantly increased in non-infarcted myocardium, suggesting that monocyte recruitment to the remote zone may contribute to post MI dilation.
Conclusion
These studies shed light on the innate inflammatory response in remote myocardium after myocardial infarction.