In the 21st century's wave of technological advancement, sensors, as a key component of the Internet of Things (IoT), have significantly propelled the development of smart cities and intelligent transportation systems. However, the high deployment costs of traditional sensors limit their practicality for large-scale applications and maintenance. To address this issue, this study proposes a low-cost, concealed, durable, and highly scalable multifunctional smart cement sensor based on triboelectric nanogenerators (SC-TENG) for constructing an allweather intelligent monitoring system. By embedding differently shaped surface insulating electrodes into the cement and applying superhydrophobic treatment to the cement surface, the SC-TENG can effectively monitor vehicle speed, measure vehicle length, and provide fencing warnings in public places at a low cost. Experimental results indicate that the SC-TENG can operate stably under various environmental conditions, maintaining stable output in ambient temperatures from 0 to 40 °C and relative humidity of 30%−70%, with negligible signal degradation even after approximately 2500 cycles. This research is significantly important for enhancing road safety, improving public security, and reducing energy consumption, providing technical support and solutions for the construction of smart cities.