Multiwavelength organic lasers have attracted considerable interest in recent years due to the cost efficiency, wide luminescence coverage, and simple processability of organics. In this work, by simply spin coating immiscible polymeric gain media in sequence, dual-wavelength (blue-green or blue-red) amplified spontaneous emission (ASE) was achieved in bilayer devices. The blue emission, water/alcohol-soluble conjugated polyelectrolyte, poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), was used as the bottom layer. The commercially available nonpolar solvent soluble polymer poly-(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) and its blend with poly(3-hexylthiophene) (P3HT) were used as the top active layers offering green and red emission, respectively. This novel compact configuration, without interlayers between the two active layers, offers potential for developing various applications. The carefully selected top and bottom layer polymers not only meet the conditions of immiscibility and different emission wavelength range but also have a common absorption band in UV, which allows simultaneous blue-green or blue-red dual-color ASE behaviors observed in the bilayer devices under the same 390 nm laser excitation. By introducing two-dimension (2D) square distributed feedback (DFB) gratings with different periods (300 nm for blue, 330 nm for green, and 390 nm for red) as cavities, single mode blue-green (E th = 245 μJ cm −2 ) and blue-red (E th = 189 μJ cm −2 ) lasers were achieved by focusing the excitation laser spot on different 2D DFB gratings area. Furthermore, we found it possible to gain sufficient light confinement for red emission along its diagonal direction (Λ ∼424 nm), whereas the 2D DFB gratings offer feedback for blue emission from the 300 nm period along the rectangle direction. Therefore, both blue and red lasers were eventually achieved in the same PFN-Br/F8BT:P3HT bilayer device on the single 2D DFB gratings with a period of 300 nm in this work.