Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Pressure-based signal transduction is of promise in developing microfluidic immunoassays such as volumetric bar-chart chips (V-chips), but new working principles are required to further simplify the methods in point-ofcare testing (POCT). Herein, we developed immunosyringe sensors and integrated them with bar-chart chips for simple prick-and-read testing of prostate specific antigen (PSA) as a model target. Disposable syringes served as the host for the construction of the sandwich-type immuno-recognition system. Platinum nanoparticles (Pt NPs) as the peroxidase-mimicking detection probe catalyzed the decomposition of H 2 O 2 to produce O 2 in the syringe cylinders, enabling the pressure-driven automatic injection of liquids from the syringes. The immunorecognition event in the syringes was thereby converted into the quantitative autoinjection behavior of the syringes, namely, immunosyringe sensors. By simply pricking the sensors to bar-chart chips, we visually and quantitatively read the immunoassay signals as the bar-chart injection distance of liquids from the syringes in channels of the chips. The immunoassay showed a limit of detection (LOD) of 0.41 ng/mL in PSA detection with satisfactory accuracy in testing clinical serum samples. Owing to the integration with the immunosyringe sensors, this method, in comparison with conventional V-chips, works in a simpler prick-and-read manner without complex chip configurations and specialized chip operations (e.g., on-chip loading of microvolume reagents and sealing treatments). Therefore, the immunoassay shows great potential in POCT applications.
Pressure-based signal transduction is of promise in developing microfluidic immunoassays such as volumetric bar-chart chips (V-chips), but new working principles are required to further simplify the methods in point-ofcare testing (POCT). Herein, we developed immunosyringe sensors and integrated them with bar-chart chips for simple prick-and-read testing of prostate specific antigen (PSA) as a model target. Disposable syringes served as the host for the construction of the sandwich-type immuno-recognition system. Platinum nanoparticles (Pt NPs) as the peroxidase-mimicking detection probe catalyzed the decomposition of H 2 O 2 to produce O 2 in the syringe cylinders, enabling the pressure-driven automatic injection of liquids from the syringes. The immunorecognition event in the syringes was thereby converted into the quantitative autoinjection behavior of the syringes, namely, immunosyringe sensors. By simply pricking the sensors to bar-chart chips, we visually and quantitatively read the immunoassay signals as the bar-chart injection distance of liquids from the syringes in channels of the chips. The immunoassay showed a limit of detection (LOD) of 0.41 ng/mL in PSA detection with satisfactory accuracy in testing clinical serum samples. Owing to the integration with the immunosyringe sensors, this method, in comparison with conventional V-chips, works in a simpler prick-and-read manner without complex chip configurations and specialized chip operations (e.g., on-chip loading of microvolume reagents and sealing treatments). Therefore, the immunoassay shows great potential in POCT applications.
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices. This article summarizes the advances in gas-generating-reaction-based immunoassays, according to different types of signal output systems, including distance-based readout, pressure differential, visualized detection, and thermal measurement. The review mainly focuses on the role of photothermal materials and the working principle of immunoassays. In addition, the challenges and prospects for the future development of gas-generating-reaction-based immunoassays are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.