Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
No abstract
No abstract
The microbiome is an important part of the complete nutritional and genomic profile of insects. The species-rich insect order Hemiptera (aphids, cicadas, true bugs) is highly diverse for mode of microbiome acquisition, with the conundrum that species in the seed-feeding subfamily Lygaeinae have lost obvious anatomy for housing bacteria, either in bacteriocytes or midgut crypts. Here we characterize the microbiome of the milkweed bug Oncopeltus fasciatus as a tractable lygaeinid, using 16S rRNA sequencing. We assess how bacterial taxa vary between the sexes and across life history stages in a controlled environment, focusing on maternal-to-embryo transmission and distinguishing egg-stage constituents that are superficial or internal (transovarially transmitted). Among a core microbiome of 28 genera, the egg stage shows the greatest diversity, with a particular expansion of the family Comamonadaceae. We also analyze inter-individual variability in nymphs and adults and validate structured, stage-specific detection of seed material. Comparative analysis identifies Rhizobium as a notable microbiome constituent in seed-feeding Hemiptera, which we had previously shown to lack nitrogen metabolism components in the genome. Overall, we provide a nuanced assessment of bacterial abundance dynamics between individuals and across the life cycle and discuss the implications for acquisition and potential relevance as nutritional endosymbionts. This will underpin comparative investigations in seed-feeding bugs and future work in O. fasciatus on tissue-specific and diet-specific microbiome profiles, including in natural populations.
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre‐moult phase to ecdysis itself and post‐moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so‐called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under‐explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an “ultra‐conserved” core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage‐specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.