The work presents the results of analyzes of the hydrogen isotopic composition of pyrolysis products of a shale sample. The pyrolysis products obtained are: methane, ethene, ethane, propylene, propane, 1-butene and n-butane. The apparatus used is a Thermo Scientific Delta V Advantage mass spectrometer with a Trace GC Ultra chromatograph (HP-PLOT/Q capillary column, 30 m) and Pyroprobe 6150 pyrolyzer (pyrolysis temperature 1000°C, isothermal 30 seconds). The Py-GC-IRMS methodology for determining the hydrogen isotopic composition of pyrolysis gas products was verified by evaluating repeatability. The shale sample was pyrolyzed at 500°C, 600°C, 700°C, 800°C, 900°C and 1000°C. Accordingly, pyrolysis at 500 o C does not allow the products to be separated. The ratio between unsaturated and saturated hydrocarbons changes, and as the temperature increases, unsaturated ones begin to dominate. The isotopic composition of individual pairs also changes, although the relationship between δD in unsaturated and saturated hydrocarbons is constant. The trend for all components is that at higher pyrolysis temperatures, the isotopic composition is also higher. Herein, the differences in the isotope composition of 900°C and 1000°C are negligible. The nature of isotopic composition determinations does not allow ascertaining the limit of quantification, the limit of detection and the method bias. Values of relative standard deviations are below five percent only for methane, ethane and propylene. In addition, repeatability tests were performed for EA-IRMS (elemental analyzer combined with isotope mass spectrometer) and GC-IRMS (sample injection directly into the inlet). The samples used were hard coal and natural gas. Repeatability of hydrogen isotopic composition analyzes assessed using relative standard deviation was the best (lowest value) for the GC-IRMS system (0.8%), then for the Py-GC-IRMS system (methane at 3 mg-1.2%) and for EA-IRMS (2.3%).