2013
DOI: 10.1111/insr.12018
|View full text |Cite
|
Sign up to set email alerts
|

Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients

Abstract: RésuméL'approche mixte, pour la modélisation des processus de survie et des processus longitudinaux, connait de nos jours un succès grandissant, en particulier lorsqu';il existe une interdépendance entre ceux‐ci. Réputés pour leur efficacité, les modèles mixtes sont moins biaisés par rapport aux méthodes classiques naïves, d'où une littérature abondante sur le sujet. L'objet de cette étude est de présenter une revue de la littérature récente sur les modèles mixtes, en l'occurrence ceux utilisés pour l'estimati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
22
0

Year Published

2014
2014
2021
2021

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 27 publications
(24 citation statements)
references
References 55 publications
2
22
0
Order By: Relevance
“…The trajectory m i ( t ) from the longitudinal model is included to link the two processes and α measures the strength of this association. While proportional hazards models are common, accelerated failure time and other survival models have been implemented (Mccrink et al , ; Tseng et al , ; Rizopoulos, , p. 137).…”
Section: Modelling Frameworkmentioning
confidence: 99%
See 3 more Smart Citations
“…The trajectory m i ( t ) from the longitudinal model is included to link the two processes and α measures the strength of this association. While proportional hazards models are common, accelerated failure time and other survival models have been implemented (Mccrink et al , ; Tseng et al , ; Rizopoulos, , p. 137).…”
Section: Modelling Frameworkmentioning
confidence: 99%
“…A typical example is a random coefficients model where Z 2 i ( t ) b i = b 0 i + b 1 i t with b 0 i and b 1 i correlated, often multivariate normal (Wulfsohn & Tsiatis, ). The association can be generalised so that αZ 2 i ( t ) b i = α 0 b 0 i + α 1 b 1 i t and α 0 need not equal α 1 (Mccrink et al , ).…”
Section: Modelling Frameworkmentioning
confidence: 99%
See 2 more Smart Citations
“…Extensions of these include, among others, models for multiple longitudinal outcomes (Hatfield, Boye, Hackshaw, and Carlin 2012), multiple failure times (Elashoff, Li, and Li 2008) and both (Chi and Ibrahim 2006). A review of the joint modeling of longitudinal and survival data was already given elsewhere (McCrink, Marshall, and Cairns 2013;Lawrence Gould et al 2015;Asar, Ritchie, Kalra, and Diggle 2015).…”
Section: Joint Modelsmentioning
confidence: 99%