Acquired genetic alterations which include balanced and unbalanced chromosome aberrations and submicroscopic gene mutations and changes in gene expression strongly influenced by pretreatment clinical features and prognosis of adults patients with acute myeloid leukemia (AML). Cytogenetic profiling separate AML patients into three broad prognostic groups: favorable, intermediate and adverse. The cytogenetic risk classifications vary to some extent for younger adult patients and for those aged 60 years or older. In many cases, patients with specific cytogenetic rearrangement such as those with a normal karyotype or those with either RUNX1-RUNX1T1 or CBFB-MYH11 feature of core-binding factor (CBF) can be further subdivided into prognostic categories depend on the presence or absence of specific gene mutations or changes in gene expression. Advancement in the understanding of cancer genetic and discovery of recurrent mutations in AML provide opportunity to develop targeted therapies and improve the clinical outcome. The identified gene mutations, mainly targetable lesions are gain of function mutations of JAK2 and cKIT and FLT3 in APL have been associated with clinical features and/ or outcome of patients with these AML subtypes. These data emphasize the significance of genetic testing for common translocations for diagnosis, prognosis and increasingly targeted therapy in acute leukemia. Notably, these several molecular genetic alterations constitute a variety of diverse new targets for salvage therapies. These approaches intend to develop targeted treatment concepts that depend on interference with molecular genetics or epigenetic mechanisms. This report provides an overview on characteristic gene mutations, discuss their biological functions and Prognostic significance, which serve as basis for selected therapy approaches now or might represent options for such approaches in the future and expected to have a role in treating AML subtypes with characteristic molecular alterations.