Hypertrophic cardiomyopathy (HCM) is a heterogeneous group of heart muscle disorders that affects millions, with an incidence from 1 in 500 to 1 in 200. Factors such as genetics, age, gender, comorbidities, and environmental factors may contribute to the course of this disease. Diagnosis of HCM has improved significantly in the past few decades from simple echocardiographic evaluations to a more complex, multimodal approach embracing advanced imaging, genetic, and biomarker studies. This review focuses on Mavacamten, a selective allosteric inhibitor of cardiac myosin, as a pharmacological treatment for HCM. Patients with HCM experience pathological actomyosin interactions, leading to impaired relaxation and increased energy expenditure. Mavacamten decreases available myosin heads, reducing actomyosin cross-bridges during systole and diastole. By reducing the number of bridges left ventricular outflow tract pressure is normalized and cardiac cavities are filled. This mechanism enhances patient performance and alleviates symptoms such as chest pain and dyspnea. The results suggest the potential for Mavacamten to transform the treatment of obstructive hypertrophic cardiomyopathy. Studies to date have shown significant improvement in exercise capacity, symptom relief, and a reduction in the need for invasive procedures such as septal myectomy. Further studies are needed to confirm the clinical results.