Abstract:Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors. However, due to the great variety of available nanomaterials, they should be carefully selected according to the desired effects. The… Show more
“…The coupling of redox enzymatic reactions with electrochemical reactions has received worldwide medical and scientific interests [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ]. The coupled reaction is called bioelectrocatalysis.…”
Section: Introductionmentioning
confidence: 99%
“…However, the response of an amperometric sensor depends on detection time, which limits practical application [ 4 , 9 , 11 , 12 , 13 , 26 , 32 , 33 ]. It is necessary for amperometric sensors to obtain steady-state currents.…”
Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
“…The coupling of redox enzymatic reactions with electrochemical reactions has received worldwide medical and scientific interests [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ]. The coupled reaction is called bioelectrocatalysis.…”
Section: Introductionmentioning
confidence: 99%
“…However, the response of an amperometric sensor depends on detection time, which limits practical application [ 4 , 9 , 11 , 12 , 13 , 26 , 32 , 33 ]. It is necessary for amperometric sensors to obtain steady-state currents.…”
Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
“…Nanomaterials are a popular carrier because of their large surface area [8,9]. At present, the application of enzyme electrodes based on nanomaterials has been widely explored [10].…”
Glucose oxidase (GOx) based biosensors are commercialized and marketed for the high selectivity of GOx. Incorporation nanomaterials with GOx can increase the sensitivity performance. In this work, an enzyme glucose biosensor based on nanotubes was fabricated. By using Ti foil as a carrier, hydrogen titanate nanotubes (HTNTs), which present fine 3D structure with vast pores, were fabricated in-situ by the hydrothermal treatment. The multilayer nanotubes are open-ended with a diameter of 10 nm. Then glucose oxidase (GOx) was loaded on the nanotubes by cross-linking to form an electrode of the amperometric glucose biosensor (GOx/HTNTs/Ti electrode). The fabricated GOx/HTNTs/Ti electrode had a linear response to 1–10 mM glucose, and the response time was 1.5 s. The sensitivity of the biosensor was 1.541 μA·mM-1·cm-2, and the detection limit (S/N = 3) was 59 μM. Obtained results indicate that the in-situ fabrication and unique 3D structure of GOx/HTNTs/Ti electrode are beneficial for its sensitivity.
“…The coupling of redox enzymatic reactions with electrochemical reactions has received worldwide medical and scientific interests [1][2][3][4][5][6][7][8][9][10][11][12][13][14]. The coupled reaction is called bioelectrocatalysis.…”
Section: Introductionmentioning
confidence: 99%
“…The response of an amperometric sensor, however, depends on the detection time, and it limits the practical application [4,9,[11][12][13]26,32,33]. It is necessary for amperometric sensors to obtain steady-state currents.…”
Bioelectrocatalysis provides the intrinsic catalytic-functions of redox enzymes to non-specific electrode reactions and is the most important and basic concept for biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multi-analyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.