Abstract-We describe a novel single-ended algorithm constructed from models of speech signals, including clean and degraded speech, and speech corrupted by multiplicative noise and temporal discontinuities. Machine learning methods are used to design the models, including Gaussian mixture models, support vector machines, and random forest classifiers. Estimates of the subjective mean opinion score (MOS) generated by the models are combined using hard or soft decisions generated by a classifier which has learned to match the input signal with the models. Test results show the algorithm outperforming ITU-T P.563, the current "state-of-art" standard single-ended algorithm. Employed in a distributed double-ended measurement configuration, the proposed algorithm is found to be more effective than P.563 in assessing the quality of noise reduction systems and can provide a functionality not available with P.862 PESQ, the current double-ended standard algorithm.Index Terms-Mean opinion score (MOS), objective quality measurement, quality model, single-ended measurement, speech communication, speech distortions, speech enhancement, speech quality, subjective quality.