Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Electrocatalysis represents an efficient and eco‐friendly approach to energy conversion, enabling the sustainable synthesis of valuable chemicals and fuels. The deliberate engineering of electrocatalysts is crucial to improving the efficacy and scalability of electrocatalysis. Notably, the occurrence of in situ amorphization within electrocatalysts has been observed during various electrochemical processes, influencing the energy conversion efficiency and catalytic mechanism understanding. Of note, the dynamic transformation of catalysts into amorphous structures is complex, often leading to various amorphous configurations. Therefore, revealing this amorphization process and understanding the function of amorphous species are pivotal for elucidating the structure‐activity relationship of electrocatalysts, which will direct the creation of highly efficient catalysts. This review examines the mechanisms behind amorphous structure formation, summarizes characterization methods for detecting amorphous species, and discusses strategies for controlling (pre)catalyst properties and electrochemical conditions that influence amorphization. It also emphasizes the importance of spontaneously formed amorphous species in electrochemical oxidation and reduction reactions. Finally, it addresses challenges in the in situ amorphization of electrocatalysts. aiming to guide the synthesis of electrocatalysts for efficient, selective, and stable electrochemical reactions, and to inspire future advancements in the field.
Electrocatalysis represents an efficient and eco‐friendly approach to energy conversion, enabling the sustainable synthesis of valuable chemicals and fuels. The deliberate engineering of electrocatalysts is crucial to improving the efficacy and scalability of electrocatalysis. Notably, the occurrence of in situ amorphization within electrocatalysts has been observed during various electrochemical processes, influencing the energy conversion efficiency and catalytic mechanism understanding. Of note, the dynamic transformation of catalysts into amorphous structures is complex, often leading to various amorphous configurations. Therefore, revealing this amorphization process and understanding the function of amorphous species are pivotal for elucidating the structure‐activity relationship of electrocatalysts, which will direct the creation of highly efficient catalysts. This review examines the mechanisms behind amorphous structure formation, summarizes characterization methods for detecting amorphous species, and discusses strategies for controlling (pre)catalyst properties and electrochemical conditions that influence amorphization. It also emphasizes the importance of spontaneously formed amorphous species in electrochemical oxidation and reduction reactions. Finally, it addresses challenges in the in situ amorphization of electrocatalysts. aiming to guide the synthesis of electrocatalysts for efficient, selective, and stable electrochemical reactions, and to inspire future advancements in the field.
Electrochemical reducing CO2 into formic acid has been demonstrated to be an economically viable pathway to relieve the greenhouse effect and obtain value‐added chemical feedstocks. Herein, Bi/Bi2O2CO3 is developed via the combination of sulfur‐assisted disassembly and an in situ reconstruction process. Profiting from the enlarged surface area and the generation of the high active heterointerface between metallic Bi and Bi2O2CO3, the as‐obtained Bi/Bi2O2CO3 exhibits high performance toward converting CO2 molecules into formate (HCOO−), attaining the HCOO− Faradaic efficiency (FEHCOO‐) over 97% in the current density range from 200 to 1000 mA cm−2 in both alkaline (1 m KOH) and near neutral (0.5 m KHCO3) electrolytes, along with excellent stability. In situ spectroscopic data unraveled the reconstruction process from Bi2S3/Bi2O2CO3 to Bi/Bi2O2CO3 and corroborated that the conversion of CO2 into formate is through the *OCHO intermediate, deepening the insights into the understanding of the Bi‐based electrocatalyst reconstruction and CO2RR mechanism.
CO2 reduction reaction (CO2RR), as a promising strategy for storing renewable energy and promoting carbon resource recycling, is critical for industrial development. Previous reports have extensively explored catalyst‐electrolyte microenvironmental modulation to elucidate coupling mechanisms and enhance catalytic conversion to multicarbon products. Currently, most reviews mainly focus on the impact of microenvironment modulation in low‐current systems on mechanism exploration and performance optimization, yet few of them can integrate macroscopic applications with microscopic investigations to explore the relevance between industrial development and catalyst‐electrolyte microenvironmental optimization. To address the gap, this review focuses on summarizing the challenges and advancements in microenvironment modulation for the development of high‐current devices. By introducing models of different scales sequentially, the connection between microenvironmental modulation and device performance is clarified. Then, various invalidation mechanisms and effective solutions are summarized to intuitively expound the impact of microenvironment modulation on high‐current stability. Meanwhile, as an intuitive measure of the rationality of microenvironment modulation, evaluation methods of device performance should be refined, which are also covered in further detail below. Finally, more valuable and challenging prospects are discussed for guiding the further industrial transformation of CO2RR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.