Siderophores, a family of biogenic metal chelating agents, play critical roles in the biogeochemical cycling of Fe and other metals by facilitating their solubilization and uptake in circumneutral to alkaline oxic environments. However, because of their small concentrations (ca. nM) and large number of molecular structures, siderophore detection and quantification in environmental samples requires specialized equipment and expertise, and often requires pre-concentration of samples, which may introduce significant bias. The "universal" CAS assay, which was originally designed for use in bacterial cultures, quantifies the iron chelating function of a pool of siderophores but only at concentrations (>2 µM) well above the concentrations estimated to be present in marine, freshwater, and soil samples. In this manuscript, we present a high sensitivity modification of this universal assay (HS-CAS) suitable for detecting and quantifying siderophore activity in the nM concentration range, allowing for direct quantitation of siderophore reactivity in transparent aqueous samples.