Potatoes are typically seeded as tubers, and their slow sprouting significantly impacts production. Therefore, the effects of polyacrylamide (20 g·L−1, 30 g·L−1, and 40 g·L−1) as a seed potato dressing on sprouting, seedling growth, and biomass were investigated. The phytohormone content, respiratory intensity, and starch metabolism enzyme activity were analyzed to elucidate the physiological mechanisms involved. The sprouting rate significantly increased after 20 g·L−1 and 30 g·L−1 treatments by 40.63% and 15.63%, respectively. The sprouting energy was the highest (52.0%) at 20 g·L−1, 7.67 times higher than the control. The 20 g·L−1 and 30 g·L−1 treatments also promoted emergence and growth, with the emergence rate increasing by 18.18% and 27.27% and growth increasing by over 8.1% and 11.9%, respectively. These effects were related to changes in phytohormone content and accelerated starch conversion. After treatment, the auxin and cytokinin contents in the apical buds increased significantly at the germination initiation stage, and during the germination and vigorous growth phases, the auxin, cytokinin, and gibberellin contents increased. Polyacrylamide treatment activated α-amylase and promoted starch degradation, increasing soluble sugar content to provide nutrients and energy for sprouting. This study provides a promising approach for promoting potato tuber sprouting and seedling growth.