The superfamily Blaberoidea is a highly species‐rich group of cockroaches. High‐level blaberoidean phylogenetics are still under debate owing to variable taxon sampling and incongruence between mitochondrial and nuclear evolution, as well as different methods used in various phylogenetic studies. We here present a phylogenetic analysis of Blaberoidea based on a dataset combining the mitochondrial genome with two nuclear markers from representatives of all recognized families within the superfamily. Our results support the monophyly of Blaberiodea, which includes Ectobiidae s.s. (=Ectobiinae), Pseudophyllodromiidae, Nyctiboridae, Blattellidae s.s. (=Blattellinae) and Blaberidae. Ectobiidae s.s. was recovered as sister to the remaining Blaberoidea in all inferences. Pseudophyllodromiidae was paraphyletic with respect to Anaplectoidea + Malaccina. Blattellidae s.s. excluding Anaplectoidea + Malaccina formed a monophyletic group that was sister to Blaberidae. Based on our results, we propose a revised classification for Blaberoidea: Anaplectoidinae subfam.nov. and Episorineuchora gen.nov., and two new combinations at species level within Pseudophyllodromiidae; Rhabdoblattellinae subfam.nov., Calolamprodinae subfam.nov., Acutirhabdoblatta gen.nov., as well as new combinations for three species within Blaberidae. Ancestral state reconstructions based on four morphological characters allow us to infer that the common ancestor of blaberoid cockroaches is likely to be a species with characteristics similar to those found in Ectobiidae, that is, front femur Type B, arolium present, abdomen with a visible gland and male genital hook on the left side.