This study investigates innovative solutions for balancing energy supply and demand using long-term thermal energy storage (TES) systems, with a focus on tank thermal energy storage (TTES) for European buildings, which account for approximately 40% of energy consumption in the European Union. Research conducted at the Technical University of Košice explores the potential of TTES systems for efficient and long-term energy storage. The accumulation is carried out in three existing underground tanks of different volumes. Among various outputs, we present the cooling process resulting from covering the water surface and the effect of tank size on cooling. The findings indicate that covering the water surface in the tanks can effectively double the energy retention time, thereby extending the cooling period. A tank with a larger volume cools slower and better ensures the formation of temperature layers. Temperature layering allows for better utilization of the tanks’ potential in terms of energy. The overall result is a significant reduction in heat losses and CO₂ emissions. These results demonstrate the critical role of TTES in stabilizing renewable energy sources, especially solar energy, to support sustainable energy solutions in buildings by providing reliable and long-term energy storage.