The longstanding theory of “parallel processing” predicts that, except for a sign reversal, ON and OFF cells are driven by a similar pre-synaptic circuit and have similar visual field coverage, direction/orientation selectivity, visual acuity and other functional properties. However, recent experimental data challenges this view. Here we present an information theory based receptive field (RF) estimation method - quadratic mutual information (QMI) - applied to multi-electrode array electrophysiological recordings from the mouse dorsal lateral geniculate nucleus (dLGN). This estimation method provides more accurate RF estimates than the commonly used Spike-Triggered Average (STA) method, particularly in the presence of spatially correlated inputs. This improved efficiency allowed a larger number of RFs (285 vs 189 cells) to be extracted from a previously published dataset. Fitting a spatial-temporal Difference-of-Gaussians (ST-DoG) model to the RFs revealed that while the structural RF properties of ON and OFF cells are largely symmetric, there were some asymmetries apparent in the functional properties of ON and OFF visual processing streams - with OFF cells preferring higher spatial and temporal frequencies on average, and showing a greater degree of orientation selectivity.