The industrial use of biomass, e.g., for the production of platform chemicals such as levulinic acid, became increasingly important in recent years. However, the efficiency of these processes was reduced by the formation of insoluble solid waste products called humins. Herein, the formation of humins from various carbohydrates was investigated under different process conditions, in order to obtain information about the structure and the formation mechanism. During this process, new potential structural fragments of humins were identified. Subsequently, the produced humins were oxidatively converted to low-molecular-weight carboxylic acids with the use of polyoxometalate catalysts. The experiments showed that the use of sugars in acetic acid and ethanol only lead to the formation of a small amount of humins, which were also structurally most suitable for conversion to carboxylic acids. The main products of the oxidative valorisation of these humins were acetic acid, formic acid, and CO2, respectively, and our results indicate that certain functional groups were converted preferentially. These findings will help to improve processes for the valorisation of biomass by enabling an overall more efficient use of thermo-sensitive feedstock such as carbohydrates.