Ralstonia solanacearum causes lethal bacterial wilt diseases in numerous crops, resulting in considerable yield losses. Harnessing genetic resistance is desirable for safeguarding plants against phytopathogens. However, genetic resources resistant to bacterial wilt are limited in crops. RipE1, a conserved type Ⅲ effector with cysteine protease activity, is recognized in Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana). Here, using a virus-induced gene silencing approach, we identified the gene encoding N. benthamiana homologue of Ptr1 (NbPtr1a), a coiled-coil nucleotide-binding leucine-rich repeat receptor (NLR) recognizing RipE1. Silencing or editing NbPtr1a completely abolished RipE1-induced cell death, indicating recognition of RipE1 by NbPtr1a. Genetic complementation confirmed this recognition, which is conserved across multiple solanaceous plants. Expression of RipE1 in planta or within pathogenic bacteria promoted pathogen colonization of Nbptr1a mutant plants, demonstrating its virulence function independent of NLR recognition. Silencing NbRIN4 enhanced RipE1-induced cell death, while expressing NbRIN4 inhibited it, suggesting that NbRIN4 is involved in recognition of NbPtr1a–RipE1. Furthermore, RipE1 associated with and cleaved NbRIN4, AtRIN4, and tomato (Solanum lycopersicum) SlRIN4 proteins through its cysteine protease activity. Silencing NbRIN4 in Nbptr1a mutants did not prevent RipE1 from promoting pathogen colonization, suggesting that NbRIN4 is not the primary target for RipE1-mediated virulence. Additionally, NbRIN4 suppressed self-association of the coiled-coil domain of NbPtr1a, which is critical for NbPtr1a-mediated cell death and resistance. Finally, we demonstrated that activation of NbPtr1a requires RipE1-mediated elimination of NbRIN4. Given the conserved nature of RipE1, Ptr1 holds great potential for protecting crops from diverse R. solanacearum strains and other distinct pathogens.