This study provides a comprehensive investigation of the impact of disinfection byproducts (DBPs) on human health, with a particular focus on DBPs present in chlorinated drinking water, concentrating on three primary DBP categories (aliphatic, alicyclic, and aromatic). Additionally, it explores pivotal factors influencing DBP formation, encompassing disinfectant types, water source characteristics, and environmental conditions, such as the presence of natural materials in water. The main objective is to discern the most hazardous DBPs, considering criteria such as regulation standards, potential health impacts, and chemical diversity. It provides a catalog of 63 key DBPs alongside their corresponding parameters. From this set, 28 compounds are meticulously chosen for in-depth analysis based on the above criteria. The findings strive to guide the advancement of water treatment technologies and intelligent sensory systems for the efficient water quality surveillance. This, in turn, enables reliable DBP detection within water distribution networks. By enriching the understanding of DBP-associated health hazards and offering valuable insights, this research is aimed to contribute to influencing policy-making in regulations and treatment strategies, thereby protecting public health and improving safety related to chlorinated drinking water quality.