Solar steam generation (SSG) is a promising technology for the production of freshwater that can help alleviate global water scarcity. Nanostructured metals, known for their localized surface plasmon resonance effect, have generated significant interest, but lowcost metal films with excellent water evaporation properties are challenging. In this work, we present a one-step dealloying route for fabricating self-supporting black nanoporous zinc (NP-Zn) films with a bicontinuous ligament/channel structure, using Al−Zn solid solution alloys as the precursors. The influence of alloy composition on the formation and macro/microstructure of NP-Zn was investigated, and an optimal Al 98 Zn 2 was selected. Additionally, in situ and ex situ characterizations were conducted to unveil the dealloying mechanism of Al 98 Zn 2 and phase/microstructure evolution of NP-Zn during dealloying, including the phase transition of Al(Zn) → Zn, significant volume shrinkage (89.8%), and the development of high porosity (81.3%). The nanoscale ligament/channel structure and high porosity endow the NP-Zn films with good broadband absorption and superior hydrophilicity and, more importantly, give them excellent SSG performance. The NP-Zn 2 film displays high evaporation efficiency, superior stability, and good seawater desalination performance. The efficient SSG performance, material abundance, and low cost suggest that NP-Zn films have promising applications in metal-based photothermal materials for SSG.