Polarized light detection can effectively identify the difference between the polarization information on the target and the background, which is of great significance for detection in complex natural environments and/or extreme weather. Generally, polarized light detection inevitably relies on anisotropic structures of photodetector devices, while organic−inorganic hybrid perovskites are ideal for anisotropic patterning due to their simple and efficient preparation by solution method. Compared to patterned thin films, patterned arrays of aligned one-dimensional (1D) perovskite nanowires (PNWAs) have fewer grain boundaries and lower defect densities, making them well suited for high-performance polarization-sensitive photodetectors. Here, we fabricated PNWAs crystallographically aligned with variable line widths and alignment densities employing CD-ROM and DVD-ROM grating pattern template-confined growth (TCG) methods. The photodetectors constructed from MAPbI 3 PNWAs achieved responsivity of 35.01 A/W, detectivity of 6.85 × 10 13 Jones, and fast response with a rise time of 172 μs and fall time of 114 μs. They were successfully applied to high-performance polarization detection with a polarization ratio of 1.81, potentially applicable in polarized light detection systems.