Hydrogen is undeniably one of the most promising options for producing energy with minimal environmental impact. However, current hydrogen production is still derived from carbon-intensive processes relying on fossil fuels. Biomass is a sustainable and versatile resource that can be converted into hydrogen through biological and thermochemical pathways from a large variety of feedstocks and technologies. This work reviews and compares existing biomass-to-hydrogen technologies, focusing on their characteristics, maturity level, benefits, limitations, and techno-economic and lifecycle environmental impacts. Less-developed biological conversion methods are characterized by low efficiencies and hydrogen productivity. More mature thermochemical routes enable higher efficiencies and hydrogen yields. Overall, while thermochemical processes suit centralized large-scale hydrogen production, biological pathways offer decentralized options, necessitating continued innovation for integration into future energy strategies. Some of these technologies, such as anaerobic digestion (best-case: 1.28 EUR/kgH2) and conventional gasification (best-case: 1.79 EUR/kgH2), emerge as promising, sustainable, and affordable alternatives for renewable hydrogen generation, offering production costs comparable to those of natural gas steam reforming (0.92–2.8 EUR/kgH2).