Advancing GABA-edited MRS Research through a Reconstruction Challenge
Rodrigo Pommot Berto,
Hanna Bugler,
Gabriel Dias
et al.
Abstract:Purpose To create a benchmark for the comparison of machine learning-based Gamma-Aminobutyric Acid (GABA)-edited Magnetic Resonance Spectroscopy (MRS) reconstruction models using one quarter of the transients typically acquired during a complete scan. Methods The Edited-MRS reconstruction challenge had three tracks with the purpose of evaluating machine learning models trained to reconstruct simulated (Track 1), homogeneous in vivo (Track 2), and heterogeneous in vivo (Track 3) GABA-edited MRS data. Four quant… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.