2023
DOI: 10.1101/2023.09.21.557971
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Advancing GABA-edited MRS Research through a Reconstruction Challenge

Rodrigo Pommot Berto,
Hanna Bugler,
Gabriel Dias
et al.

Abstract: Purpose To create a benchmark for the comparison of machine learning-based Gamma-Aminobutyric Acid (GABA)-edited Magnetic Resonance Spectroscopy (MRS) reconstruction models using one quarter of the transients typically acquired during a complete scan. Methods The Edited-MRS reconstruction challenge had three tracks with the purpose of evaluating machine learning models trained to reconstruct simulated (Track 1), homogeneous in vivo (Track 2), and heterogeneous in vivo (Track 3) GABA-edited MRS data. Four quant… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?