Artificial intelligence (AI) has emerged as a transformative force in healthcare, particularly in the field of ophthalmology. This comprehensive review examines the current applications of AI in ophthalmology, highlighting its significant contributions to diagnostic accuracy, treatment efficacy, and patient care. AI technologies, such as deep learning algorithms, have demonstrated exceptional performance in the early detection and diagnosis of various eye conditions, including diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Additionally, AI has enhanced the analysis of ophthalmic imaging techniques like optical coherence tomography (OCT) and fundus photography, facilitating more precise disease monitoring and management. The review also explores AI's role in surgical assistance, predictive analytics, and personalized treatment plans, showcasing its potential to revolutionize clinical practice and improve patient outcomes. Despite these advancements, challenges such as data privacy, regulatory hurdles, and ethical considerations remain. The review underscores the need for continued research and collaboration among clinicians, researchers, technology developers, and policymakers to address these challenges and fully harness the potential of AI in improving eye health worldwide. By integrating AI with teleophthalmology and developing AI-driven wearable devices, the future of ophthalmic care promises enhanced accessibility, efficiency, and efficacy, ultimately reducing the global burden of visual impairment and blindness.