Advancing Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) Diagnosis: A Comparative Analysis of Machine Learning Methodologies
Joseph J. Janicki,
Bernadette M. M. Zwaans,
Sarah N. Bartolone
et al.
Abstract:Background/Objectives. This study aimed to improve machine learning models for diagnosing interstitial cystitis/bladder pain syndrome (IC/BPS) by comparing classical machine learning methods with newer AutoML approaches, utilizing biomarker data and patient-reported outcomes as features. Methods. We applied various machine learning techniques to biomarker data from the previous IP4IC and ICRS studies to predict the presence of IC/BPS, a disorder impacting the urinary bladder. Data were sourced from two nationw… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.