Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
In petroleum refining, catalysts are used to efficiently convert crude oil into valuable products such as fuels and petrochemicals. These catalysts are employed in a range of processes, including catalytic cracking, hydrotreating, and reforming to meet stringent fuel quality standards. This review explores recent advancements in refining catalysts, focusing on novel materials, enhanced synthesis methods, and their industrial applications. The development of nano-, hierarchically structured, and supported metal catalysts has led to significant improvements in catalyst selectivity, yield, and longevity. These innovations are particularly important for processes such as hydrocracking, fluid catalytic cracking, and catalytic reforming, where catalysts improve conversion rates, product quality, and environmental sustainability. Advances in synthesis techniques such as sol-gel processes, microwave-assisted synthesis, and atomic layer deposition have further optimized catalyst performance. Environmental considerations have also driven the development of catalysts that reduce harmful emissions, particularly sulfur oxides and nitrogen oxides while promoting green catalysis through the use of bio-based materials and recyclable catalysts. Despite these advancements, challenges remain, particularly in scaling novel materials for industrial use and integrating them with existing technologies. Future research should focus on the exploration of new catalytic materials, such as metal-organic frameworks and multi-functional catalysts, which promise to further revolutionize the refining industry. This review thus demonstrates the transformative potential of advanced catalysts in enhancing the efficiency and environmental sustainability of petroleum refining.
In petroleum refining, catalysts are used to efficiently convert crude oil into valuable products such as fuels and petrochemicals. These catalysts are employed in a range of processes, including catalytic cracking, hydrotreating, and reforming to meet stringent fuel quality standards. This review explores recent advancements in refining catalysts, focusing on novel materials, enhanced synthesis methods, and their industrial applications. The development of nano-, hierarchically structured, and supported metal catalysts has led to significant improvements in catalyst selectivity, yield, and longevity. These innovations are particularly important for processes such as hydrocracking, fluid catalytic cracking, and catalytic reforming, where catalysts improve conversion rates, product quality, and environmental sustainability. Advances in synthesis techniques such as sol-gel processes, microwave-assisted synthesis, and atomic layer deposition have further optimized catalyst performance. Environmental considerations have also driven the development of catalysts that reduce harmful emissions, particularly sulfur oxides and nitrogen oxides while promoting green catalysis through the use of bio-based materials and recyclable catalysts. Despite these advancements, challenges remain, particularly in scaling novel materials for industrial use and integrating them with existing technologies. Future research should focus on the exploration of new catalytic materials, such as metal-organic frameworks and multi-functional catalysts, which promise to further revolutionize the refining industry. This review thus demonstrates the transformative potential of advanced catalysts in enhancing the efficiency and environmental sustainability of petroleum refining.
The purification and removal of polar impurities in olefin feedstocks is crucial for downstream deep processing, and adsorption is the main method for deep purification of such impurities. This article takes dimethyl ether, a typical oxygen-containing compound impurity in MTOs, as a polar impurity molecule, and LTA and FAU topological zeolites as research objects. The influence of zeolite topology, morphology, skeleton silicon–aluminum (Si/Al) ratio, and ion type on the adsorption and removal of trace dimethyl ether was investigated by XRD, SEM, XRF, and nitrogen adsorption–desorption methods. The FAU topological zeolites show a better adsorption performance for dimethyl ether owing to their larger specific surface area and unobstructed pores compared with LTA zeolites. Among FAU topological zeolites, the NaX zeolite a with lower framework silica–alumina ratio has the highest adsorption capacity for dimethyl ether. Magnesium ion exchange on NaX zeolites (MgNaX) reduce the specific surface area and adsorption capacity of the NaX zeolite. However, after forming with alumina as a binder, the adsorption capacity of the MgNaX–Al2O3 adsorbent is about 13% higher than that of the NaX–Al2O3 adsorbent without Mg ion exchange. This may be due to the decomposition of residual organic Mg salts in the Mg ion exchange samples during high-temperature calcination, resulting in a larger specific surface area for the formed adsorbent. Further characterization of NH3–TPD and CO2–TPD shows that Mg ion exchange weakens the acid–base active sites on the adsorbent surface. The reduction in acid–base sites reduces the occurrence of side reactions such as polymerization and isomerization caused by the exothermic adsorption of olefins on adsorbents. Repeated adsorption data show that the formed adsorbent has excellent regeneration–adsorption performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.