Advancing Sustainable Manufacturing: Reinforcement Learning with Adaptive Reward Machine Using an Ontology-Based Approach
Fatemeh Golpayegani,
Saeedeh Ghanadbashi,
Akram Zarchini
Abstract:Sustainable manufacturing practices are crucial in job shop scheduling (JSS) to enhance the resilience of production systems against resource shortages and regulatory changes, contributing to long-term operational stability and environmental care. JSS involves rapidly changing conditions and unforeseen disruptions that can lead to inefficient resource use and increased waste. However, by addressing these uncertainties, we can promote more sustainable operations. Reinforcement learning-based job shop scheduler … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.