Offering real-time precise point positioning (PPP) services for global and large areas based on global navigation satellite systems (GNSS) has drawn more and more attention from institutions and companies. A precise and reliable satellite orbit is a core premise for multi-GNSS real-time services, especially for the GPS and GLONASS, which are undergoing modernization, whereas the Galileo, BDS and QZSS have just fulfilled the construction stage. In this contribution, a real-time precise orbit determination (POD) strategy for the five operational constellations based on the hourly updated ultrarapid orbit prediction method is presented. After combination of 72 h arc through three adjacent 24 h arc normal equations, the predicted orbits are finally generated (hourly updated). The POD results indicate that the mean one-dimensional (1-D) root mean square (RMS) values compared with the Deutsches GeoForschungsZentrum (GFZ) final multi-GNSS orbits are approximately 3.7 cm, 10.2 cm, 5.8 cm, 5.7 cm, 4.1 cm and 25.1 cm for GPS, BDS IGSOs, BDS MEOs, GLONASS, Galileo and QZSS NONE GEOs, respectively. The mean 1-D RMS values of the hourly updated ultrarapid orbit boundary overlapping comparison are approximately 1.6 cm, 6.9 cm, 3.2 cm, 2.7 cm, 1.8 cm and 22.2 cm for GPS, BDS IGSOs, BDS MEOs, GLONASS, Galileo and QZSS NONE GEOs, respectively. The satellite laser ranging (SLR) validation illuminates that the mean RMS values are approximately 4.53 cm and 4.73 cm for the four MEOs of BDS-3 and four BDS-2 satellites, respectively.