Background/Objectives: Advancements in oral imaging technology are continually shaping the landscape of dental diagnosis and treatment planning. Among these, photon-counting computed tomography (PCCT), introduced in 2021, has emerged as a promising, high-quality oral technology. Dental imaging typically requires a resolution beyond the standard CT systems achievable with the specialized cone-beam CT. PCCT can offer up to 100 µm resolution, improve soft-tissue contrast, and provide faster scanning times, which are crucial for detailed dental diagnosis and treatment planning. Using semiconductor detectors, PCCT produces sharper images and can potentially reduce the number of scans required, thereby decreasing patient radiation exposure. This review aimed to explore the potential benefits of PCCT in dental imaging. Methods: This review analyzed the literature on PCCT in dental imaging from January 2010 to February 2024, sourced from PubMed, Scopus, and Web of Science databases, focusing on high-resolution, patient safety, and diagnostic efficiency in dental structure assessment. We included English-language articles, case studies, letters, observational studies, and randomized controlled trials while excluding duplicates and studies unrelated to PCCT’s application in dental imaging. Results: Studies have highlighted the superiority of PCCT in reducing artifacts, which are often problematic, compared to conventional CBCT and traditional CT scans, due to metallic dental implants, particularly when used with virtual monoenergetic imaging and iterative metal artifact reduction, thereby improving implant imaging. This review acknowledges limitations, such as the potential for overlooking other advanced imaging technologies, a narrow study timeframe, the lack of real-world clinical application data in this field, and costs. Conclusions: PCCT represents a promising advancement in dental imaging, offering high-resolution visuals, enhanced contrast, and rapid scanning with reduced radiation exposure.