2016
DOI: 10.1134/s0021894416010211
|View full text |Cite
|
Sign up to set email alerts
|

Advective flow in a rotating liquid film

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(5 citation statements)
references
References 3 publications
0
4
0
1
Order By: Relevance
“…In this classification, special emphasis must be placed on the use of classes of exact solutions. Historically, the class of exact solutions is understood to mean a given structure of the velocity field, which is a some combination of functions of a simpler form than the general solution of the Navier-Stokes equations, although the calculated solutions can be threedimensional in coordinates and depend on time (Ovsiannikov 1956, Lin 1958, Rajagopal and Gupta 1981, Sidorov 1981, Goldshtik et al 1989, Wang 1989, 1990, Hamdan 1998, Meleshko 2004, Aristov and Shvarts 2006, 2011:…”
Section: Reviewmentioning
confidence: 99%
“…In this classification, special emphasis must be placed on the use of classes of exact solutions. Historically, the class of exact solutions is understood to mean a given structure of the velocity field, which is a some combination of functions of a simpler form than the general solution of the Navier-Stokes equations, although the calculated solutions can be threedimensional in coordinates and depend on time (Ovsiannikov 1956, Lin 1958, Rajagopal and Gupta 1981, Sidorov 1981, Goldshtik et al 1989, Wang 1989, 1990, Hamdan 1998, Meleshko 2004, Aristov and Shvarts 2006, 2011:…”
Section: Reviewmentioning
confidence: 99%
“…They found that the critical wave number also increases with increasing rotational intensity. The stability of an advective flow in a rotating horizontal layer was studied in Julien et al (1996); Schwarz (2005); Aristov and Shvarts (2016); Aristov and Schwarz (2006); Novi et al (2019).…”
Section: Introductionmentioning
confidence: 99%
“…Для невращающихся жидкостей при учете конвекции точными решениями для переопределенной системы уравнений Обербека-Буссинеска точными решениями является класс Остроумова-Бириха и его модификации и обобщения [40][41][42][43][44][45][46][47][48][49][50][51][52]. В статьях [53][54][55][56][57][58][59][60][61][62][63][64] рассмотрены приложения точного решения Остроумова-Бириха к вращающейся жидкости. Все течения, о которых шла речь выше, зависят от распределения давления.…”
Section: Introductionunclassified