Graph neural networks (GNNs) are widely utilized to capture the information spreading patterns in graphs. While remarkable performance has been achieved, there is a new trending topic of evaluating node influence. We propose a new method of evaluating node influence, which measures the prediction change of a trained GNN model caused by removing a node. A real-world application is, "In the task of predicting Twitter accounts' polarity, had a particular account been removed, how would others' polarity change?". We use the GNN as a surrogate model whose prediction could simulate the change of nodes or edges caused by node removal. Our target is to obtain the influence score for every node, and a straightforward way is to alternately remove every node and apply the trained GNN on the modified graph to generate new predictions. It is reliable but time-consuming, so we need an efficient method. The related lines of work, such as graph adversarial attack and counterfactual explanation, cannot directly satisfy our needs, since their problem settings are different. We propose an efficient, intuitive, and effective method, NOde-Removal-based fAst GNN inference (NORA), which uses the gradient information to approximate the node-removal influence. It only costs one forward propagation and one backpropagation to approximate the influence score for all nodes. Extensive experiments on six datasets and six GNN models verify the effectiveness of NORA. Our code is available at https://github.com/weikai-li/NORA.git.
CCS CONCEPTS• Information systems → Web mining; • Computing methodologies → Neural networks.