Convolutional Neural Networks (CNNs) are deployed in more and more classification systems, but adversarial samples can be maliciously crafted to trick them, and are becoming a real threat. There have been various proposals to improve CNNs' adversarial robustness but these all suffer performance penalties or have other limitations. In this paper, we offer a new approach in the form of a certifiable adversarial detection scheme, the Certifiable Taboo Trap (CTT). This system, in theory, can provide certifiable guarantees of detectability of a range of adversarial inputs for certain l ∞ sizes. We develop and evaluate several versions of CTT with different defense capabilities, training overheads and certifiability on adversarial samples. In practice, against adversaries with various l p norms, CTT outperforms existing defense methods that focus purely on improving network robustness. We show that CTT has small false positive rates on clean test data, minimal compute overheads when deployed, and can support complex security policies.