Abstract:Recommendation systems tend to suffer severely from the sparse training data. A large portion of users and items usually have a very limited number of training instances. The data sparsity issue prevents us from accurately understanding users' preferences and items' characteristics and jeopardize the recommendation performance eventually. In addition, models, trained with sparse data, lack abundant training supports and tend to be vulnerable to adversarial perturbations, which implies possibly large errors in … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.