Motivation
Adverse drug reaction (ADR) or drug side effect studies play a crucial role in drug discovery. Recently, with the rapid increase of both clinical and non-clinical data, machine learning methods have emerged as prominent tools to support analyzing and predicting ADRs. Nonetheless, there are still remaining challenges in ADR studies.
Results
In this paper, we summarized ADR data sources and review ADR studies in three tasks: drug-ADR benchmark data creation, drug–ADR prediction and ADR mechanism analysis. We focused on machine learning methods used in each task and then compare performances of the methods on the drug–ADR prediction task. Finally, we discussed open problems for further ADR studies.
Availability
Data and code are available at https://github.com/anhnda/ADRPModels.